Relaxation-assisted separation of chemical sites in NMR spectroscopy of static solids.

نویسندگان

  • Adonis Lupulescu
  • Mrignayani Kotecha
  • Lucio Frydman
چکیده

We discuss the potential use of relaxation times toward the resolution of inequivalent chemical sites in the NMR spectroscopy of powdered or disordered samples. This proposal is motivated by the significant differences that can often be detected in the relaxation behavior of sites in solids, particularly when focusing on NMR observations of quadrupolar nuclei possessing different coordination and/or dynamic environments. It is shown that in these cases the implementation of a non-negative least-squares analysis on relaxation data sets enables the bidimensional resolution of overlapping powder line shapes, even when dealing with static samples. In combination with signal-enhancement methodologies such as the quadrupolar Carr-Purcell Meiboom-Gill train, such relaxation-assisted separations open up valuable routes toward the high-resolution characterization of systems involving insensitive (e.g., low-gamma) nuclei. The principles and limitations of the 2D NMR approach resulting from these considerations are discussed, and their potential is exemplified with a variety of static and spinning investigations. Their extension to other nuclear systems where spectral resolution is problematic, such as protons in organic solids, is also briefly considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Static and dynamic NMR properties of gas-phase xenon

This thesis presents computational studies of both the static and dynamic parameters of the nuclear magnetic resonance (NMR) spectroscopy of gaseous xenon. First, state-of-the-art static magnetic resonance parameters are computed in small xenon clusters by using methods of quantum chemistry, and second, time-dependent relaxation phenomena are investigated via molecular dynamics simulations at d...

متن کامل

Solid-State Diffusion and NMR

Diffusion in solids, which requires the presence of crystal defects or disorder, has both microscopic and macroscopic aspects. Nuclear magnetic resonance techniques provide access to microscopic diffusion parameters like atomic jump rates and activation energies as well as to the tracer diffusion coefficient for macroscopic transport. Microscopic NMR methods include spin-lattice relaxation spec...

متن کامل

Oxygen - 17 Cross - Polarization NMR Spectroscopy of Inorganic Solids

We have obtained I70 nuclear magnetic resonance spectra of a variety of ‘70-labeled solids (Mg(OH)z, Ca(OH)*, boehmite (AlO(C talc (Mg3Si.,0,,(OH)2), (C6H,),SiOH, and amorphous Si02) using high-field static and “magioangle” sample spinning techniques, together with ‘H cross polarization and dipolar decoupling. Our results show that large cross-polarization enhancements can be obtained and that ...

متن کامل

The Static Magnetic Field Dependence of Chemical Exchange Linebroadening Defines the NMR Chemical Shift Time Scale

The static magnetic field dependence of chemical exchange linebroadening in NMR spectroscopy is investigated theoretically and experimentally. Two-site exchange (A / B) is considered with site A more highly populated than site B (pa > pb), a shift difference between sites equal to ∆ω, and an exchange rate constant given by kex. The exchange contribution to the transverse relaxation rate constan...

متن کامل

Resonance-assisted stabilisation of hydrogen bonds probed by NMR spectroscopy and path integral molecular dynamics.

Path integral molecular dynamics and experimental NMR data are used to investigate resonance-assisted hydrogen bonds (RAHBs). When nuclear delocalisation is included in chemical shift calculations, the agreement with experiment is excellent, while static calculations show very poor performance. The results support the concept of RAHB, which has recently been questioned.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 125 11  شماره 

صفحات  -

تاریخ انتشار 2003